🤖 Build a Tax Code Assistant with Qdrant and OpenAI

This n8n workflow builds another example of creating a knowledge base assistant but demonstrates how a more deliberate and targeted approach to ingesting the data can produce much better results for your chatbot.

In this example, a government tax code policy document is used. Whilst we could split the document into chunks by content length, we often lose the context of chapters and sections which may be required by the user.

Our approach then is to first split the document into chapters and sections before importing into our vector store. Additionally, using metadata correctly is key to allow filtering and scoped queries.

Example

Human: “Tell me about what the tax code says about cargo for intentional commerce?”

AI: “Section 11.25 of the Texas Property Tax Code pertains to ‘MARINE CARGO CONTAINERS USED EXCLUSIVELY IN INTERNATIONAL COMMERCE.’ In this section, a person who is a citizen of a foreign country or an…”

How it works

The tax code policy document is downloaded as a zip file from the government website and its pages are extracted as separate chapters.

Each chapter is then parsed and split into its sections using data manipulation expressions. Each section is then inserted into our Qdrant vector store tagged with its source, chapter, and section numbers as metadata.

When our AI Agent needs to retrieve data from our vector store, we use a custom workflow tool to perform the query to Qdrant. Because we’re relying on Qdrant’s advanced filtering capabilities, we perform the search using the Qdrant API rather than the Qdrant node.

When the AI Agent needs to pull full wording or extracts, we can use Qdrant’s scroll API and metadata filtering to do so. This makes Qdrant behave like a key-value store for our document.

Requirements

A Qdrant instance is required for the vector store and specifically for its filtering functionality. Mistral.ai account for Embeddings and AI models.

Customising this workflow

Depending on your use-case, consider returning actual PDF pages (or links) to the user for the extra confirmation and to build trust. Not using Mistral? You are able to replace but note to match the distance and dimension size of the Qdrant collection to your chosen embedding model.

				
					{
  "meta": {
    "instanceId": "26ba763460b97c249b82942b23b6384876dfeb9327513332e743c5f6219c2b8e"
  },
  "nodes": [
    {
      "id": "1bb3c94e-326e-41ca-82e4-102a598dba39",
      "name": "When clicking u2018Test workflowu2019",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -320,
        300
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "751b283b-ea88-4fcd-ace3-3c86631f8876",
      "name": "Embeddings Mistral Cloud",
      "type": "@n8n/n8n-nodes-langchain.embeddingsMistralCloud",
      "position": [
        1760,
        560
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "mistralCloudApi": {
          "id": "EIl2QxhXAS9Hkg37",
          "name": "Mistral Cloud account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "f0851949-1036-4040-84df-61295cc5db74",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        1900,
        560
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "chapter",
                "value": "={{ $('For Each Section...').item.json.chapter }}"
              },
              {
                "name": "section",
                "value": "={{ $('For Each Section...').item.json.label }}"
              },
              {
                "name": "=title",
                "value": "={{ $('For Each Section...').item.json.title }}"
              },
              {
                "name": "content_order",
                "value": "={{ $itemIndex }}"
              }
            ]
          }
        },
        "jsonData": "={{ $json.content }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "41d10b61-9fbe-446e-a65a-0db6e0116e5b",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        1920,
        680
      ],
      "parameters": {
        "options": {},
        "chunkSize": 2000
      },
      "typeVersion": 1
    },
    {
      "id": "a1ecb096-4d31-4993-b801-ca3f09a9edc7",
      "name": "Get Tax Code Zip File",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -20,
        340
      ],
      "parameters": {
        "url": "https://statutes.capitol.texas.gov/Docs/Zips/TX.pdf.zip",
        "options": {
          "response": {
            "response": {
              "responseFormat": "file"
            }
          }
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "cf983315-fe2a-43c1-8dc6-b17a217b845e",
      "name": "Extract Zip Files",
      "type": "n8n-nodes-base.compression",
      "position": [
        140,
        340
      ],
      "parameters": {},
      "typeVersion": 1.1
    },
    {
      "id": "8d02dd80-d14a-4e56-ab40-f2c4a445c57b",
      "name": "Files as Items",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        300,
        340
      ],
      "parameters": {
        "include": "allOtherFields",
        "options": {},
        "fieldToSplitOut": "$binary"
      },
      "typeVersion": 1
    },
    {
      "id": "038060dc-e01d-40ae-878d-5043bc36ab91",
      "name": "Extract PDF Contents",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        560,
        380
      ],
      "parameters": {
        "options": {},
        "operation": "pdf",
        "binaryPropertyName": "=file_{{ $itemIndex }}"
      },
      "typeVersion": 1
    },
    {
      "id": "4a85003b-b988-467b-b1cb-29206cbed879",
      "name": "Extract From Chapter",
      "type": "n8n-nodes-base.set",
      "position": [
        740,
        380
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "d791928a-d775-48cc-9004-a92cbe2403d3",
              "name": "contents",
              "type": "array",
              "value": "={{n  $json.textn    .substring($json.text.search(/\nSec\.\nA[0-9]{1,4}\.[0-9]{1,5}\.AA/), $json.text.length)n    .split(/\nSec\.\nA[0-9]{1,2}\.[0-9]{1,2}\.AA/g)n    .filter(text => !text.isEmpty())n    .map(text => {n      const output = text.replaceAll('AA', ' ').replaceAll('\nA', ' ');n      const title = output.substring(0, output.indexOf('.'));n      const content = output.substring(output.indexOf('.')+1, output.length).replaceAll('\n', ' ').trim();n      return { title, content };n    })n}}"
            },
            {
              "id": "bc06641f-0b75-4a35-8752-78803231d5d6",
              "name": "labels",
              "type": "array",
              "value": "={{n  $json.textn    .match(/\nSec\.\nA[0-9]{1,4}\.[0-9]{1,5}\.AA/g)n    .map(text => ({n        label: text.replaceAll('AA', ' ')n                  .replaceAll('\nA', ' ')n                  .replaceAll('\n', '')n                  .trim()n    }))n}}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "ee338786-91df-4784-bd7e-f86c0e13ca26",
      "name": "Map To Sections",
      "type": "n8n-nodes-base.set",
      "position": [
        740,
        520
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "60109e60-d760-45bb-be09-7cb2b5eb85bc",
              "name": "section",
              "type": "array",
              "value": "={{n  $json.labels.map((label, idx) => ({n    label: label.label.match(/\d.+/)[0].replace(/\.$/, ''),n    title: $json.contents[idx].title,n    content: $json.contents[idx].content,n    chapter: $('Extract PDF Contents').first().json.info.Title,n  }))n}}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "41c9899d-26d7-48af-9af2-8563ab0fb7e4",
      "name": "Execute Workflow Trigger",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        1313,
        1200
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "3a93c19b-09d9-4e38-8b0c-2008fc03f7fc",
      "name": "Get Mistral Embeddings",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1660,
        1060
      ],
      "parameters": {
        "url": "https://api.mistral.ai/v1/embeddings",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "model",
              "value": "mistral-embed"
            },
            {
              "name": "encoding_format",
              "value": "float"
            },
            {
              "name": "input",
              "value": "={{ $json.query }}"
            }
          ]
        },
        "nodeCredentialType": "mistralCloudApi"
      },
      "credentials": {
        "mistralCloudApi": {
          "id": "EIl2QxhXAS9Hkg37",
          "name": "Mistral Cloud account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "1adc12bd-ba61-4f1a-b1f9-3f19a542e294",
      "name": "Content Chunking @ 50k Chars",
      "type": "n8n-nodes-base.set",
      "position": [
        1580,
        400
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "7753a4f4-3ec2-4c05-81df-3d5e8979a478",
              "name": "=content",
              "type": "array",
              "value": "={{ new Array(Math.round($json.content.length / Math.min($json.content.length, 30000))).fill('').map((_,idx) => $json.content.substring(idx * 30000, idx * 50000 + 30000)) }}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "ff8adce2-8f73-4a8f-b512-5aa560ca0954",
      "name": "Split Out Chunks",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        1580,
        580
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "content"
      },
      "typeVersion": 1
    },
    {
      "id": "5f08ce3c-240d-4c91-bb23-953866fd0361",
      "name": "For Each Section...",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1400,
        280
      ],
      "parameters": {
        "options": {},
        "batchSize": 5
      },
      "typeVersion": 3
    },
    {
      "id": "6346cf67-7d93-4315-bb0d-2e016c9853b9",
      "name": "Sections To List",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        940,
        380
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "section"
      },
      "typeVersion": 1
    },
    {
      "id": "95e34952-03e2-40e3-a245-9da8c9e1f249",
      "name": "Only Valid Sections",
      "type": "n8n-nodes-base.filter",
      "position": [
        1100,
        380
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "or",
          "conditions": [
            {
              "id": "121e8f86-2ead-47e0-8e17-52d7c6ba8265",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "={{ $json.content }}",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2
    },
    {
      "id": "dfe1818f-93b7-4116-8a6e-dcb2e6c23fcf",
      "name": "Use Qdrant Search API1",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1860,
        1060
      ],
      "parameters": {
        "url": "=http://qdrant:6333/collections/texas_tax_codes/points/search",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "limit",
              "value": "={{ 4 }}"
            },
            {
              "name": "vector",
              "value": "={{ $json.data[0].embedding }}"
            },
            {
              "name": "with_payload",
              "value": "={{ true }}"
            }
          ]
        },
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "588318e6-e188-4d99-9c11-39b2f3fb1c18",
      "name": "Use Qdrant Scroll API",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1660,
        1320
      ],
      "parameters": {
        "url": "=http://qdrant:6333/collections/texas_tax_codes/points/scroll",
        "method": "POST",
        "options": {
          "pagination": {
            "pagination": {
              "parameters": {
                "parameters": [
                  {
                    "name": "next_page_offset",
                    "type": "body",
                    "value": "={{ $response.body.result.next_page_offset }}"
                  }
                ]
              },
              "completeExpression": "={{ $response.body.result.next_page_offset === null }}",
              "paginationCompleteWhen": "other"
            }
          }
        },
        "sendBody": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "limit",
              "value": "={{ 100 }}"
            },
            {
              "name": "with_payload",
              "value": "={{ true }}"
            },
            {
              "name": "filter",
              "value": "={{n{n  "must": [n    ($json.query.sectionn      ? { "key": "metadata.section", "match": { "value": $json.query.section } }n      : { "key": "metadata.chapter", "match": { "value": $json.query.chapter } }n    )n  ]n}n}}"
            }
          ]
        },
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "bbf01344-c60e-42b3-8d7d-2bb360876d79",
      "name": "Get Search Response",
      "type": "n8n-nodes-base.set",
      "position": [
        1860,
        1320
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "08ad2d6e-4ed1-409e-b89c-1f0c7fdf1b64",
              "name": "response",
              "type": "string",
              "value": "=---nchapter: {{ $json.result.points.first().payload.metadata.chapter }}nsection: {{ $json.result.points.first().payload.metadata.section }}ntitle: {{ $json.result.points.first().payload.metadata.title }}n---n{{ $json.result.pointsn      .toSorted((a,b) => (a.payload.metadata.content_order || 0) - (b.payload.metadata.content_order || 0))n      .map(point => point.payload.content).join('\n') }}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "3b23ff5e-158a-470f-a262-d001d52feeba",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -100,
        183.38345554113084
      ],
      "parameters": {
        "color": 7,
        "width": 571.4359274276384,
        "height": 352.65642339230595,
        "content": "## Step 1. Download the Tax Code PDFn[Read more about handling Zip Files](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.compression/)nnLet's begin by pulling a zip file containing all the tax codes as separate PDF files. We can unzip on the fly with n8n's compression node."
      },
      "typeVersion": 1
    },
    {
      "id": "02826887-eb26-48a0-928e-fe56ee008425",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        500,
        199.87747230655896
      ],
      "parameters": {
        "color": 7,
        "width": 777.897719182587,
        "height": 503.3459981018574,
        "content": "## Step 2. Extract and Partition Into Chapters & Sectionsn[Learn more about reading PDF Files](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.extractfromfile)nnRather than ingest the raw text of the PDF, we'll be a little more strategic and extract the tax code sections separately instead. Not only will this provide cleaner results, we'll also be able to fetch sections in isolation if required."
      },
      "typeVersion": 1
    },
    {
      "id": "31a34972-31ab-4b96-9d09-cd30a3b184cf",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1300,
        108.82958126396
      ],
      "parameters": {
        "color": 7,
        "width": 1045.1698686248747,
        "height": 771.1260499456115,
        "content": "## Step 3. Save into Qdrant VectorStoren[Read more about using the Qdrant Vectorstore](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant)nnWe'll save our data into a Qdrant collection being mindful to use metadata to take full advantage of Qdrant's filtering capabilities later.nThough not always required, since the tax code documents can be quite large we'll implement a loop here to throttle the number of tokens being processed as to not trip the Mistral.ai rate limits for embeddings."
      },
      "typeVersion": 1
    },
    {
      "id": "27039fa6-6388-45ee-a2d5-6bb68554944b",
      "name": "Qdrant Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        1760,
        400
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "texas_tax_codes",
          "cachedResultName": "texas_tax_codes"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "5ec16c20-eb1e-454a-8165-594d83dd8711",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        360,
        900
      ],
      "parameters": {
        "color": 7,
        "width": 858.1415560000298,
        "height": 513.2269439624808,
        "content": "## Step 4. Build a Tax Code Assistant ChatBotn[Learn more about using AI Agents in n8n](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent)nnFor our chatbot, we'll use an AI agent node because we want to achieve more than one functionality. The first will be querying to relevant texts to answer a user's question and secondly, a direct search feature to pull full section text when requested."
      },
      "typeVersion": 1
    },
    {
      "id": "d5145c6f-768b-42d8-a045-20e045f52b0b",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1240,
        904.6076722083936
      ],
      "parameters": {
        "color": 7,
        "width": 1030.0926850706744,
        "height": 577.7854680142904,
        "content": "## Step 5. Use Qdrant API as Toolsn[Learn more about using AI Agents in n8n](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent)nnOur Ask Tool will generate embeddings using Mistral.ai and query our Qdrant collection using the Qdrant Search API.nOur Search Tool will use filter our Qdrant collection using the Qdrant Scroll API, matching on each doc's section metadata key."
      },
      "typeVersion": 1
    },
    {
      "id": "ccf50479-53d8-4edf-8f2b-73060a6a6e0f",
      "name": "AI Agent",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        700,
        1063
      ],
      "parameters": {
        "options": {
          "systemMessage": "You are a helpful assistant answering user questions on the tax code legistration for the state of Texas, united states of america.nnAlong with your response also note in which chapter and section number the information was found. "
        }
      },
      "typeVersion": 1.6
    },
    {
      "id": "d7e7fa9e-73ba-4df3-862e-25af63d9d9b4",
      "name": "Window Buffer Memory",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        820,
        1223
      ],
      "parameters": {},
      "typeVersion": 1.2
    },
    {
      "id": "a79bdbcd-7157-470a-aadc-bd3f8a4c40d2",
      "name": "When chat message received",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        420,
        1063
      ],
      "webhookId": "db2b118d-942e-4be9-b154-7df887232f97",
      "parameters": {
        "public": true,
        "options": {
          "loadPreviousSession": "memory"
        },
        "initialMessages": ""
      },
      "typeVersion": 1
    },
    {
      "id": "6046f137-b508-484f-8577-ac51a35eee09",
      "name": "Window Buffer Memory1",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        420,
        1223
      ],
      "parameters": {},
      "typeVersion": 1.2
    },
    {
      "id": "30f238f8-1987-4d6d-b06d-ac2106ea3734",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        700,
        1223
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "8a8490f6-5957-495c-a7af-15cec669f39c",
      "name": "1sec",
      "type": "n8n-nodes-base.wait",
      "position": [
        2160,
        660
      ],
      "webhookId": "852317f0-aadf-4658-ae44-d05e5de29302",
      "parameters": {
        "amount": 1
      },
      "executeOnce": false,
      "typeVersion": 1.1
    },
    {
      "id": "142450f5-8ec1-4ae6-b25c-df3233394d4e",
      "name": "Ask Tool",
      "type": "@n8n/n8n-nodes-langchain.toolWorkflow",
      "position": [
        960,
        1223
      ],
      "parameters": {
        "name": "query_tax_code_knowledgebase",
        "fields": {
          "values": [
            {
              "name": "route",
              "stringValue": "ask_tool"
            }
          ]
        },
        "workflowId": "={{ $workflow.id }}",
        "description": "Call this tool to query the tax code database for information. Structure your query in the form of a question for best results."
      },
      "typeVersion": 1.1
    },
    {
      "id": "ee455a4e-c9a1-49b2-a036-d3f3d34099c6",
      "name": "Search Tool",
      "type": "@n8n/n8n-nodes-langchain.toolWorkflow",
      "position": [
        1060,
        1223
      ],
      "parameters": {
        "name": "get_tax_code_section",
        "fields": {
          "values": [
            {
              "name": "route",
              "stringValue": "search_tool"
            }
          ]
        },
        "workflowId": "={{ $workflow.id }}",
        "description": "Call this tool to search for specific sections of the tax code document. Pass in either a known section number/id to get the section's text or a known chapter name to return all sections for the chapter.",
        "jsonSchemaExample": "{nt"chapter": "some_value",n    "section": "Sec 1.01"n}",
        "specifyInputSchema": true
      },
      "typeVersion": 1.1
    },
    {
      "id": "f3240f8d-8869-4088-8e4f-d4e23a3c12a8",
      "name": "Switch",
      "type": "n8n-nodes-base.switch",
      "position": [
        1473,
        1200
      ],
      "parameters": {
        "rules": {
          "values": [
            {
              "outputKey": "ask_tool",
              "conditions": {
                "options": {
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "operator": {
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.route }}",
                    "rightValue": "ask_tool"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "search_tool",
              "conditions": {
                "options": {
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "909362ed-eb97-405c-9f2f-f404a3bfeaf3",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.route }}",
                    "rightValue": "search_tool"
                  }
                ]
              },
              "renameOutput": true
            }
          ]
        },
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "71441b5a-099b-49e0-a212-3087d958b38b",
      "name": "Get Ask Response",
      "type": "n8n-nodes-base.set",
      "position": [
        2060,
        1060
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "eb5f2b3c-bb88-4cae-a960-164016c9a9e4",
              "name": "response",
              "type": "string",
              "value": "=|chapter|section|title|content|n|-|-|-|-|n{{n  $json.result.map(row => [n    '',n    row.payload.metadata.chapter,n    row.payload.metadata.section,n    row.payload.metadata.title,n    row.payload.content,n    ''n  ].join('|')).join('\n')n}}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "54a744a3-95c9-4d9a-b1e7-e266a51f77ca",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -520,
        -79.56762868134751
      ],
      "parameters": {
        "width": 383.14868794462586,
        "height": 563.604204119637,
        "content": "## Try Me Out!n### This workflow builds an AI powered Legal assistant who answers questions about tax codes.n* Download publically available tax code PDFs from the relevant government website.n* Strategically exact tax code sections and store these in our Qdrant Vectorstore using Mistral.ai embeddings.n* Use an AI Agent to answer user's tax questions by attaching tools which query our Qdrant vectorstore.nn### Need Help?nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!nnHappy Hacking!"
      },
      "typeVersion": 1
    },
    {
      "id": "7f802f12-03e0-4b8e-a880-8c26242c1152",
      "name": "Sticky Note6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        790.1971986436472,
        720
      ],
      "parameters": {
        "color": 5,
        "width": 489.3944544742706,
        "height": 131.61363932813174,
        "content": "### ud83dude4bu200du2640ufe0fWhat's the difference?nWith raw PDF data, we may blur the boundaries between chapters and sections making later results hard to find, incoherent or misleading.nDepending on your use-case, store your data in a way you intend to retrieve it!"
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "1sec": {
      "main": [
        [
          {
            "node": "For Each Section...",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Switch": {
      "main": [
        [
          {
            "node": "Get Mistral Embeddings",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "Use Qdrant Scroll API",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Ask Tool": {
      "ai_tool": [
        [
          {
            "node": "AI Agent",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "Search Tool": {
      "ai_tool": [
        [
          {
            "node": "AI Agent",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "Files as Items": {
      "main": [
        [
          {
            "node": "Extract PDF Contents",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Map To Sections": {
      "main": [
        [
          {
            "node": "Sections To List",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Sections To List": {
      "main": [
        [
          {
            "node": "Only Valid Sections",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Split Out Chunks": {
      "main": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Extract Zip Files": {
      "main": [
        [
          {
            "node": "Files as Items",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "AI Agent",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Default Data Loader": {
      "ai_document": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "For Each Section...": {
      "main": [
        null,
        [
          {
            "node": "Content Chunking @ 50k Chars",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Only Valid Sections": {
      "main": [
        [
          {
            "node": "For Each Section...",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Qdrant Vector Store": {
      "main": [
        [
          {
            "node": "1sec",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Extract From Chapter": {
      "main": [
        [
          {
            "node": "Map To Sections",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Extract PDF Contents": {
      "main": [
        [
          {
            "node": "Extract From Chapter",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Window Buffer Memory": {
      "ai_memory": [
        [
          {
            "node": "AI Agent",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Get Tax Code Zip File": {
      "main": [
        [
          {
            "node": "Extract Zip Files",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Use Qdrant Scroll API": {
      "main": [
        [
          {
            "node": "Get Search Response",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Window Buffer Memory1": {
      "ai_memory": [
        [
          {
            "node": "When chat message received",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Get Mistral Embeddings": {
      "main": [
        [
          {
            "node": "Use Qdrant Search API1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Use Qdrant Search API1": {
      "main": [
        [
          {
            "node": "Get Ask Response",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings Mistral Cloud": {
      "ai_embedding": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Execute Workflow Trigger": {
      "main": [
        [
          {
            "node": "Switch",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "When chat message received": {
      "main": [
        [
          {
            "node": "AI Agent",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Content Chunking @ 50k Chars": {
      "main": [
        [
          {
            "node": "Split Out Chunks",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Recursive Character Text Splitter": {
      "ai_textSplitter": [
        [
          {
            "node": "Default Data Loader",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "When clicking u2018Test workflowu2019": {
      "main": [
        [
          {
            "node": "Get Tax Code Zip File",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}