{
  "meta": {
    "instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9"
  },
  "nodes": [
    {
      "id": "5961a808-a873-497e-bc42-5b760ded1571",
      "name": "When clicking u2018Test workflowu2019",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        380,
        360
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "7fa03eaa-7865-46ce-9f58-7e19fc0ec89b",
      "name": "Hacker News",
      "type": "n8n-nodes-base.hackerNews",
      "position": [
        1200,
        400
      ],
      "parameters": {
        "articleId": "={{ $('Set Variables').item.json.story_id }}",
        "additionalFields": {
          "includeComments": true
        }
      },
      "typeVersion": 1
    },
    {
      "id": "82675738-9df7-47a3-8363-264bb09255f4",
      "name": "Split Out",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        1560,
        400
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "data"
      },
      "typeVersion": 1
    },
    {
      "id": "6800be57-40da-4d80-ac35-304403423263",
      "name": "Get Comments",
      "type": "n8n-nodes-base.set",
      "position": [
        1380,
        400
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "91110cf7-1932-43ca-b24e-9d4ed40447e6",
              "name": "data",
              "type": "array",
              "value": "={{n$json.children.flatMap(item => {n  return [n    { id: item.id, story_id: item.story_id, story_title: $json.title, author: item.author, text: item.text },n    ...item.children.flatMap(item1 => {n         return [n           { id: item1.id, story_id: item1.story_id, story_title: $json.title, author: item1.author, text: item1.text },n           ...item1.children.flatMap(item2 => {n               return [n                 { id: item2.id, story_id: item2.story_id, story_title: $json.title, author: item2.author, text: item2.text },n                 ...item2.children.flatMap(item3 => {n                     return [n                       { id: item3.id, story_id: item3.story_id, story_title: $json.title, author: item3.author, text: item3.text },n                       ...item3.children.flatMap(item4 => {n                          return { id: item4.id, story_id: item4.story_id, story_title: $json.title, author: item4.author, text: item4.text }n                       })n                     ]n                 })n               ]n           })n        ]n    })n  ]n})n}}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "18e1b980-1d98-4a89-8cc6-f4793c004d9f",
      "name": "Qdrant Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        1960,
        320
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "hn_comments",
          "cachedResultName": "hn_comments"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c4ce1342-1460-4650-8338-055979339f46",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        1960,
        480
      ],
      "parameters": {
        "model": "text-embedding-3-small",
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "00301fd6-8766-40f7-99eb-7f8af9a51b29",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        2080,
        480
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "item_id",
                "value": "={{ $json.id }}"
              },
              {
                "name": "item_author",
                "value": "={{ $json.author }}"
              },
              {
                "name": "story_id",
                "value": "={{ $json.story_id }}"
              },
              {
                "name": "story_title",
                "value": "={{ $json.story_title }}"
              }
            ]
          }
        },
        "jsonData": "={{ $json.text }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "c76d3aea-0906-4ed4-a828-47ad5775364c",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        2080,
        620
      ],
      "parameters": {
        "options": {},
        "chunkSize": 4000
      },
      "typeVersion": 1
    },
    {
      "id": "50735ca9-90eb-408a-9bca-97eea1a310d1",
      "name": "Set Variables",
      "type": "n8n-nodes-base.set",
      "position": [
        620,
        360
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "5b77516d-acb5-41af-9346-a67acecd0419",
              "name": "story_id",
              "type": "string",
              "value": "41123155"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "376a1a66-1d22-4969-af11-d1a9d474b67b",
      "name": "Clear Existing Comments",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        860,
        360
      ],
      "parameters": {
        "url": "http://qdrant:6333/collections/hn_comments/points/delete",
        "method": "POST",
        "options": {},
        "jsonBody": "={n    "filter": {n        "must": [n            {n                "key": "metadata.story_id",n                "match": {n                    "value": "{{ $('Set Variables').item.json.story_id }}"n                }n            }n        ]n    }n}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "e8bcf7d8-aa25-499e-a64f-4d20caf1d6d4",
      "name": "Get Payload of Points",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1822,
        1100
      ],
      "parameters": {
        "url": "=http://qdrant:6333/collections/hn_comments/points",
        "method": "POST",
        "options": {},
        "jsonBody": "={{n  {n    "ids": $json.points,n    "with_payload": truen  }n}}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "57cbc8e5-dd89-4c2a-9906-2bd0c2bbdede",
      "name": "Clusters To List",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        1602,
        1100
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "output"
      },
      "typeVersion": 1
    },
    {
      "id": "20b76291-f8fa-4aa7-8f1a-ff423ac3cb7f",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2242,
        1320
      ],
      "parameters": {
        "model": "gpt-4o-mini",
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "07fc19b3-33b4-42be-bda9-f1436d4e9e6f",
      "name": "Only Clusters With 3+ points",
      "type": "n8n-nodes-base.filter",
      "position": [
        1602,
        1260
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "328f806c-0792-4d90-9bee-a1e10049e78f",
              "operator": {
                "type": "array",
                "operation": "lengthGt",
                "rightType": "number"
              },
              "leftValue": "={{ $json.points }}",
              "rightValue": 2
            }
          ]
        }
      },
      "typeVersion": 2
    },
    {
      "id": "80583492-c454-4b9d-8df9-ded7d50930f2",
      "name": "Set Variables1",
      "type": "n8n-nodes-base.set",
      "position": [
        582,
        1200
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "2e58a9fa-a14d-4a6c-8cc8-8ec947c791fb",
              "name": "story_id",
              "type": "string",
              "value": "={{ $json.story_id || 41123155 }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "2cfb3a7a-01d2-4eee-b9f8-d19e81829882",
      "name": "Prep Output For Export",
      "type": "n8n-nodes-base.set",
      "position": [
        2842,
        1200
      ],
      "parameters": {
        "mode": "raw",
        "options": {},
        "jsonOutput": "={{ {n  ...$json.output,n  "Story ID": $('Set Variables1').item.json.story_id,n  "Story Title": $('Get Payload of Points').item.json.result[0].payload.metadata.story_title,n  "Number of Responses": $('Get Payload of Points').item.json.result.length,n  "Raw Responses": $('Get Payload of Points').item.json.result.map(item =>n    [n      item.payload.metadata.item_id,n      item.payload.metadata.story_id,n      item.payload.metadata.story_title,n      item.payload.metadata.item_author,n      item.payload.content.replaceAll('"', '\"').replaceAll('\n', ' ').substring(0, 500)n    ]n   ).join('\n')n} }}n"
      },
      "typeVersion": 3.4
    },
    {
      "id": "ade302fd-93ad-4d96-9852-e4108ba435af",
      "name": "Export To Sheets",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        3062,
        1200
      ],
      "parameters": {
        "columns": {
          "value": {},
          "schema": [
            {
              "id": "Story ID",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Story ID",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Insight",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Insight",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Sentiment",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Sentiment",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Number of Responses",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Number of Responses",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Raw Responses",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Raw Responses",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "autoMapInputData",
          "matchingColumns": []
        },
        "options": {
          "useAppend": true
        },
        "operation": "append",
        "sheetName": {
          "__rl": true,
          "mode": "name",
          "value": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "id",
          "value": "=1CPA_SNpWr2OjZ2KMi49fZ6MA9yC9uik8PMOILan7qYE"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "XHvC7jIRR8A2TlUl",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.4
    },
    {
      "id": "22d54081-7a52-40f2-837c-0c8df05e1fe4",
      "name": "Execute Workflow Trigger",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        382,
        1200
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "b1e6eb2b-4627-4c69-a2ce-6bb8451d6359",
      "name": "Trigger Insights",
      "type": "n8n-nodes-base.executeWorkflow",
      "position": [
        2780,
        360
      ],
      "parameters": {
        "options": {},
        "workflowId": "={{ $workflow.id }}"
      },
      "typeVersion": 1
    },
    {
      "id": "f25e8b2a-5ce4-4e02-8e08-e3dd98072d0e",
      "name": "Prep Values For Trigger",
      "type": "n8n-nodes-base.set",
      "position": [
        2580,
        360
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "24dd90ad-390f-444e-ba6c-8c06a41e836e",
              "name": "story_id",
              "type": "string",
              "value": "={{ $('Set Variables').item.json.story_id }}"
            }
          ]
        }
      },
      "executeOnce": true,
      "typeVersion": 3.4
    },
    {
      "id": "d0270fa8-5ebc-4573-b070-05d19dd3302a",
      "name": "Find Comments",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        982,
        1160
      ],
      "parameters": {
        "url": "=http://qdrant:6333/collections/hn_comments/points/scroll",
        "method": "POST",
        "options": {},
        "jsonBody": "={n  "limit": 500,n  "filter":{n    "must": [n      {n        "key": "metadata.story_id",n        "match": { "value": {{ $('Set Variables1').item.json.story_id }} }n      }n    ]n  },n  "with_vector":truen}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "ca3c040e-bfe1-4f4d-9c4e-154c2010f89b",
      "name": "Sticky Note6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2440,
        160
      ],
      "parameters": {
        "color": 7,
        "width": 595.5213902293318,
        "height": 429.11782776909047,
        "content": "## Step 4. Trigger Insights SubWorkflown[Learn more about Workflow Triggers](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.executeworkflow)nnA subworkflow is used to trigger the analysis for the survey. This separation is optional but used here to better demonstrate the two part process."
      },
      "typeVersion": 1
    },
    {
      "id": "cdf04343-abfa-4705-9828-e246c96ffa2a",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1780,
        60
      ],
      "parameters": {
        "color": 7,
        "width": 638.5221986278162,
        "height": 741.0186923170972,
        "content": "## Step 3. Store Comments in Qdrantn[Learn more about the Qdrant Vector Store](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant/)nnVector databases are a great way to store data if you're interested in perform similiarity searches which applies here as we want to group similar comments to find patterns. Qdrant is a powerful vector database and tool of choice because of its robust API implementation and advanced filtering capabilities."
      },
      "typeVersion": 1
    },
    {
      "id": "14f6872b-1c51-4359-a39f-cc6ba2ff29fb",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1100,
        200
      ],
      "parameters": {
        "color": 7,
        "width": 656.0317138444963,
        "height": 441.0753369736108,
        "content": "## Step 2. Using HN API to get Commentsn[Read more about HTTP Request Node](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.hackernews)nnWe'll scrape all the comments for the HN story using the HN API node. We go an extra step and flatten the comment tree so replies are also considered as top level comments."
      },
      "typeVersion": 1
    },
    {
      "id": "62935316-310a-4ce9-ac5f-8820666e2290",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        280,
        180
      ],
      "parameters": {
        "color": 7,
        "width": 787.3314861380661,
        "height": 465.52420584035275,
        "content": "## Step 1. Starting FreshnFor this demo, we'll clear any existing records in our Qdrant vector store for the selected HN story. We do this using the Qdrant's delete points API."
      },
      "typeVersion": 1
    },
    {
      "id": "a5e93a02-555c-48a3-afae-344a4884908b",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        269,
        1005
      ],
      "parameters": {
        "color": 7,
        "width": 551.2710561574413,
        "height": 407.9295477646979,
        "content": "## Step 5. The Insight Subworkflown[Learn more about Workflow Triggers](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.executeworkflowtrigger)nnThis subworkflow takes the Story ID to find the relevant comment records in our Qdrant vector store. Our goal is to find insights on what's the community consensus on a particular HN story."
      },
      "typeVersion": 1
    },
    {
      "id": "37217a2d-aca4-499b-9d6b-a1d4c6684194",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        840,
        920
      ],
      "parameters": {
        "color": 7,
        "width": 600.1809497875241,
        "height": 482.99934349707576,
        "content": "## Step 6. Apply Clustering Algorithm to Commentsn[Read more about using Python in n8n](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.code)nnWe'll retrieve our vectors embeddings for the desired HN story comments and perform an advanced clustering algorithm on them. This powerful echnique allows us to quickly group similar embeddings into clusters which we can then use to discover popular feedback, opinions and pain-points!nnWe're able to do this thanks to te Python Code Node."
      },
      "typeVersion": 1
    },
    {
      "id": "fcccc9a8-ee9f-41b7-b7d6-e8fbbe19dfa3",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1466,
        880
      ],
      "parameters": {
        "color": 7,
        "width": 598.5585287222906,
        "height": 605.9905193915599,
        "content": "## Step 7. Fetch Comment Contents By Clustern[Learn more about using the Code Node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.code/)nnWith the Qdrant point IDs grouped and returned by our code node, all that's left is to fetch the payload of each. Note that the clustering algorithm isn't perfect and may require some tweaking depending on your data."
      },
      "typeVersion": 1
    },
    {
      "id": "78e9cd03-dea4-4b11-947f-a00d7bb5f8cf",
      "name": "Sticky Note7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2086,
        929
      ],
      "parameters": {
        "color": 7,
        "width": 587.6069484146701,
        "height": 583.305275883189,
        "content": "## Step 8. Getting Insights from Grouped Commentsn[Read more about using the Information Extractor Node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor)nnNext, we'll use our state-of-the-art LLM to generate insights on our comment groups. Doing it this way, we'll able to pull more granular results addressing many key topics discussed for the HN story."
      },
      "typeVersion": 1
    },
    {
      "id": "d5427741-6015-4af5-8e45-f6fc6f5c4133",
      "name": "Sticky Note8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2706,
        940
      ],
      "parameters": {
        "color": 7,
        "width": 572.5638733479158,
        "height": 464.4019616956416,
        "content": "## Step 9. Write To Insights SheetnFinally, our completed insights to appended to the Insights Sheet we created earlier in the workflow.nnYou can find a sample sheet here: https://docs.google.com/spreadsheets/d/e/2PACX-1vQXaQU9XxsxnUIIeqmmf1PuYRuYtwviVXTv6Mz9Vo6_a4ty-XaJHSeZsptjWXS3wGGDG8Z4u16rvE7l/pubhtml"
      },
      "typeVersion": 1
    },
    {
      "id": "a66b7e6d-0602-4f6b-a9f6-76a63d590956",
      "name": "Sticky Note9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        560,
        313.32160655630304
      ],
      "parameters": {
        "width": 226.36363118160727,
        "height": 296.5755172289686,
        "content": "nnnnnnnnnnnnnnnn### ud83dudea8 Set Story ID here!nMust be a valid HN story ID"
      },
      "typeVersion": 1
    },
    {
      "id": "42f93189-4bd8-4487-975a-f1c8f8365242",
      "name": "Apply K-means Clustering Algorithm",
      "type": "n8n-nodes-base.code",
      "position": [
        1202,
        1160
      ],
      "parameters": {
        "language": "python",
        "pythonCode": "import numpy as npnfrom sklearn.cluster import KMeansnn# get vectors for all answersnpoint_ids = [item.id for item in _input.first().json.result.points]nvectors = [item.vector.to_py() for item in _input.first().json.result.points]nvectors_array = np.array(vectors)nn# apply k-means clustering where n_clusters = 5n# this is a max and we'll discard some of these clusters laternkmeans = KMeans(n_clusters=min(len(vectors), 5), random_state=42).fit(vectors_array)nlabels = kmeans.labels_nunique_labels = set(labels)nn# Extract and print points in each clusternclusters = {}nfor label in set(labels):n    clusters[label] = vectors_array[labels == label]nn# return Qdrant point ids for each clustern# we'll use these ids to fetch the payloads from the vector store.noutput = []nfor cluster_id, cluster_points in clusters.items():n    points = [point_ids[i] for i in range(len(labels)) if labels[i] == cluster_id]n    output.append({n        "id": f"Cluster {cluster_id}",n        "total": len(cluster_points),n        "points": pointsn    })nnreturn {"json": {"output": output } }"
      },
      "typeVersion": 2
    },
    {
      "id": "4ddeab09-e401-41ad-861f-560b9e92bf89",
      "name": "Sticky Note10",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -180,
        40
      ],
      "parameters": {
        "width": 400.381109509268,
        "height": 612.855812336249,
        "content": "## Try It Out!nn### This workflow generates highly-detailed community insights from HN Story comments. Works best when dealing with a large number of comments.nn* Import HN Story comments and vectorise in Qdrant vectorstore.n* Identify clusters of popular topics in discussion using K-means clustering algorithm. n* Each valid cluster is analysed and summarised by LLM.n* Export LLM response and cluster results back into sheet.nnCheck out the reference google sheet here: https://docs.google.com/spreadsheets/d/e/2PACX-1vQXaQU9XxsxnUIIeqmmf1PuYRuYtwviVXTv6Mz9Vo6_a4ty-XaJHSeZsptjWXS3wGGDG8Z4u16rvE7l/pubhtmlnn### Need Help?nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!nnHappy Hacking!"
      },
      "typeVersion": 1
    },
    {
      "id": "eea1b301-f030-48a9-bcfc-63fe3e1aac0d",
      "name": "Information Extractor",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        2260,
        1140
      ],
      "parameters": {
        "text": "=The {{ $json.result.length }} comments were:n{{n$json.result.map(item =>n`* Commenter "${item.payload.metadata.item_author}" says the following: "${item.payload.content.replaceAll('"', '\"').replaceAll('\n', ' ')}"`n).join('\n')n}}",
        "options": {
          "systemPromptTemplate": "=You help summarise a selection of forum comments for an article called "{{ $json.result[0].payload.metadata.story_title }}".nThe {{ $json.result.length }} comments were selected because their contents were similar in context.nnYour task is to: n* summarise the given comments into a short paragraph. Provide an insight from this summary and what we could learn from the comments.n* determine if the overall sentiment of all the listed responses to be either strongly negative, negative, neutral, positive or strongly positive."
        },
        "schemaType": "fromJson",
        "jsonSchemaExample": "{nt"Insight": "",n    "Sentiment": "",n    "Suggested Improvements": ""n}"
      },
      "typeVersion": 1
    },
    {
      "id": "bee4dd57-c907-418f-ad87-21c6ce4e6698",
      "name": "Sticky Note12",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        280,
        660
      ],
      "parameters": {
        "color": 5,
        "width": 323.2987132716669,
        "height": 80,
        "content": "### Run this once! nIf for any reason you need to run more than once, be sure to clear the existing data first."
      },
      "typeVersion": 1
    },
    {
      "id": "429e080d-5a94-442c-a2b0-6a12f03a8a98",
      "name": "Sticky Note11",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        840,
        1440
      ],
      "parameters": {
        "color": 5,
        "width": 323.2987132716669,
        "height": 110.05160146874424,
        "content": "### First Time Running?nThere is a slight delay on first run because the code node has to download the required packages."
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "Split Out": {
      "main": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Hacker News": {
      "main": [
        [
          {
            "node": "Get Comments",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Get Comments": {
      "main": [
        [
          {
            "node": "Split Out",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Find Comments": {
      "main": [
        [
          {
            "node": "Apply K-means Clustering Algorithm",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Set Variables": {
      "main": [
        [
          {
            "node": "Clear Existing Comments",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Set Variables1": {
      "main": [
        [
          {
            "node": "Find Comments",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Clusters To List": {
      "main": [
        [
          {
            "node": "Only Clusters With 3+ points",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI": {
      "ai_embedding": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Information Extractor",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Default Data Loader": {
      "ai_document": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "Qdrant Vector Store": {
      "main": [
        [
          {
            "node": "Prep Values For Trigger",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Get Payload of Points": {
      "main": [
        [
          {
            "node": "Information Extractor",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Information Extractor": {
      "main": [
        [
          {
            "node": "Prep Output For Export",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Prep Output For Export": {
      "main": [
        [
          {
            "node": "Export To Sheets",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Clear Existing Comments": {
      "main": [
        [
          {
            "node": "Hacker News",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Prep Values For Trigger": {
      "main": [
        [
          {
            "node": "Trigger Insights",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Execute Workflow Trigger": {
      "main": [
        [
          {
            "node": "Set Variables1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Only Clusters With 3+ points": {
      "main": [
        [
          {
            "node": "Get Payload of Points",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Recursive Character Text Splitter": {
      "ai_textSplitter": [
        [
          {
            "node": "Default Data Loader",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "When clicking u2018Test workflowu2019": {
      "main": [
        [
          {
            "node": "Set Variables",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Apply K-means Clustering Algorithm": {
      "main": [
        [
          {
            "node": "Clusters To List",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}