{
  "id": "cpuFyJYHKmjHTncz",
  "meta": {
    "instanceId": "2cb7a61f866faf57392b91b31f47e08a2b3640258f0abd08dd71f087f3243a5a",
    "templateCredsSetupCompleted": true
  },
  "name": "Adaptive RAG",
  "tags": [],
  "nodes": [
    {
      "id": "856bd809-8f41-41af-8f72-a3828229c2a5",
      "name": "Query Classification",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Classify a query into one of four categories: Factual, Analytical, Opinion, or Contextual.n        nReturns:nstr: Query category",
      "position": [
        380,
        -20
      ],
      "parameters": {
        "text": "=Classify this query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "You are an expert at classifying questions. nnClassify the given query into exactly one of these categories:n- Factual: Queries seeking specific, verifiable information.n- Analytical: Queries requiring comprehensive analysis or explanation.n- Opinion: Queries about subjective matters or seeking diverse viewpoints.n- Contextual: Queries that depend on user-specific context.nnReturn ONLY the category name, without any explanation or additional text."
        },
        "promptType": "define"
      },
      "typeVersion": 1.8
    },
    {
      "id": "cc2106fc-f1a8-45ef-b37b-ab981ac13466",
      "name": "Switch",
      "type": "n8n-nodes-base.switch",
      "position": [
        740,
        -40
      ],
      "parameters": {
        "rules": {
          "values": [
            {
              "outputKey": "Factual",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "87f3b50c-9f32-4260-ac76-19c05b28d0b4",
                    "operator": {
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Factual"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Analytical",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "f8651b36-79fa-4be4-91fb-0e6d7deea18f",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Analytical"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Opinion",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "5dde06bc-5fe1-4dca-b6e2-6857c5e96d49",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Opinion"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Contextual",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "bf97926d-7a0b-4e2f-aac0-a820f73344d8",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Contextual"
                  }
                ]
              },
              "renameOutput": true
            }
          ]
        },
        "options": {
          "fallbackOutput": 0
        }
      },
      "typeVersion": 3.2
    },
    {
      "id": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
      "name": "Factual Strategy - Focus on Precision",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for factual queries focusing on precision.",
      "position": [
        1140,
        -780
      ],
      "parameters": {
        "text": "=Enhance this factual query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at enhancing search queries.nnYour task is to reformulate the given factual query to make it more precise and specific for information retrieval. Focus on key entities and their relationships.nnProvide ONLY the enhanced query without any explanation."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "020d2201-9590-400d-b496-48c65801271c",
      "name": "Analytical Strategy - Comprehensive Coverage",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for analytical queries focusing on comprehensive coverage.",
      "position": [
        1140,
        -240
      ],
      "parameters": {
        "text": "=Generate sub-questions for this analytical query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at breaking down complex questions.nnGenerate sub-questions that explore different aspects of the main analytical query.nThese sub-questions should cover the breadth of the topic and help retrieve comprehensive information.nnReturn a list of exactly 3 sub-questions, one per line."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "c35d1b95-68c8-4237-932d-4744f620760d",
      "name": "Opinion Strategy - Diverse Perspectives",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for opinion queries focusing on diverse perspectives.",
      "position": [
        1140,
        300
      ],
      "parameters": {
        "text": "=Identify different perspectives on: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at identifying different perspectives on a topic.nnFor the given query about opinions or viewpoints, identify different perspectives that people might have on this topic.nnReturn a list of exactly 3 different viewpoint angles, one per line."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "363a3fc3-112f-40df-891e-0a5aa3669245",
      "name": "Contextual Strategy - User Context Integration",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for contextual queries integrating user context.",
      "position": [
        1140,
        840
      ],
      "parameters": {
        "text": "=Infer the implied context in this query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at understanding implied context in questions.nnFor the given query, infer what contextual information might be relevant or implied but not explicitly stated. Focus on what background would help answering this query.nnReturn a brief description of the implied context."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "45887701-5ea5-48b4-9b2b-40a80238ab0c",
      "name": "Chat",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -280,
        120
      ],
      "webhookId": "56f626b5-339e-48af-857f-1d4198fc8a4d",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "7f7df364-4829-4e29-be3d-d13a63f65b8f",
      "name": "Factual Prompt and Output",
      "type": "n8n-nodes-base.set",
      "position": [
        1540,
        -780
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing factual information. Answer the question based on the provided context. Focus on accuracy and precision. If the context doesn't contain the information needed, acknowledge the limitations."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "590d8667-69eb-4db2-b5be-714c602b319a",
      "name": "Contextual Prompt and Output",
      "type": "n8n-nodes-base.set",
      "position": [
        1540,
        840
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing contextually relevant information. Answer the question considering both the query and its context. Make connections between the query context and the information in the provided documents. If the context doesn't fully address the specific situation, acknowledge the limitations."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "fa3228ee-62d8-4c02-9dca-8a1ebc6afc74",
      "name": "Opinion Prompt and Output",
      "type": "n8n-nodes-base.set",
      "position": [
        1540,
        300
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant discussing topics with multiple viewpoints. Based on the provided context, present different perspectives on the topic. Ensure fair representation of diverse opinions without showing bias. Acknowledge where the context presents limited viewpoints."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "c769a76a-fb26-46a1-a00d-825b689d5f7a",
      "name": "Analytical Prompt and Output",
      "type": "n8n-nodes-base.set",
      "position": [
        1540,
        -240
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing analytical insights. Based on the provided context, offer a comprehensive analysis of the topic. Cover different aspects and perspectives in your explanation. If the context has gaps, acknowledge them while providing the best analysis possible."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "fcd29f6b-17e8-442c-93f9-b93fbad7cd10",
      "name": "Gemini Classification",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        360,
        180
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-lite"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "2zwuT5znDglBrUCO",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c0828ee3-f184-41f5-9a25-0f1059b03711",
      "name": "Gemini Factual",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1120,
        -560
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "2zwuT5znDglBrUCO",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "98f9981d-ea8e-45cb-b91d-3c8d1fe33e25",
      "name": "Gemini Analytical",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1120,
        -20
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "2zwuT5znDglBrUCO",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c85f270d-3224-4e60-9acf-91f173dfe377",
      "name": "Chat Buffer Memory Analytical",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1280,
        -20
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "c39ba907-7388-4152-965a-e28e626bc9b2",
      "name": "Chat Buffer Memory Factual",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1280,
        -560
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "52dcd9f0-e6b3-4d33-bc6f-621ef880178e",
      "name": "Gemini Opinion",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1120,
        520
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "2zwuT5znDglBrUCO",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "147a709a-4b46-4835-82cf-7d6b633acd4c",
      "name": "Chat Buffer Memory Opinion",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1280,
        520
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "3cb6bf32-5937-49b9-acf7-d7d01dc2ddd1",
      "name": "Gemini Contextual",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1120,
        1060
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "2zwuT5znDglBrUCO",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "5916c4f1-4369-4d66-8553-2fff006b7e69",
      "name": "Chat Buffer Memory Contextual",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1280,
        1060
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "d33377c2-6b98-4e4d-968f-f3085354ae50",
      "name": "Embeddings",
      "type": "@n8n/n8n-nodes-langchain.embeddingsGoogleGemini",
      "position": [
        2060,
        200
      ],
      "parameters": {
        "modelName": "models/text-embedding-004"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "2zwuT5znDglBrUCO",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "32d9a0c0-0889-4cb2-a088-8ee9cfecacd3",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1040,
        -900
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Factual Strategyn**Retrieve precise facts and figures.**"
      },
      "typeVersion": 1
    },
    {
      "id": "064a4729-717c-40c8-824a-508406610a13",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1040,
        -360
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Analytical Strategyn**Provide comprehensive coverage of a topics and exploring different aspects.**"
      },
      "typeVersion": 1
    },
    {
      "id": "9fd52a28-44bc-4dfd-bdb7-90987cc2f4fb",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1040,
        180
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Opinion Strategyn**Gather diverse viewpoints on a subjective issue.**"
      },
      "typeVersion": 1
    },
    {
      "id": "3797b21f-cc2a-4210-aa63-6d181d413c5e",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1040,
        720
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Contextual Strategyn**Incorporate user-specific context to fine-tune the retrieval.**"
      },
      "typeVersion": 1
    },
    {
      "id": "16fa1531-9fb9-4b12-961c-be12e20b2134",
      "name": "Concatenate Context",
      "type": "n8n-nodes-base.summarize",
      "position": [
        2440,
        -20
      ],
      "parameters": {
        "options": {},
        "fieldsToSummarize": {
          "values": [
            {
              "field": "document.pageContent",
              "separateBy": "other",
              "aggregation": "concatenate",
              "customSeparator": "={{ "\n\n---\n\n" }}"
            }
          ]
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0",
      "name": "Retrieve Documents from Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        2080,
        -20
      ],
      "parameters": {
        "mode": "load",
        "topK": 10,
        "prompt": "={{ $json.prompt }}nnUser query: n{{ $json.output }}",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $('Combined Fields').item.json.vector_store_id }}"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "mb8rw8tmUeP6aPJm",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
      "name": "Set Prompt and Output",
      "type": "n8n-nodes-base.set",
      "position": [
        1880,
        -20
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "1d782243-0571-4845-b8fe-4c6c4b55379e",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "547091fb-367c-44d4-ac39-24d073da70e0",
              "name": "prompt",
              "type": "string",
              "value": "={{ $json.prompt }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "0c623ca1-da85-48a3-9d8b-90d97283a015",
      "name": "Gemini Answer",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        2720,
        200
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "2zwuT5znDglBrUCO",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "fab91e48-1c62-46a8-b9fc-39704f225274",
      "name": "Answer",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        2760,
        -20
      ],
      "parameters": {
        "text": "=User query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "={{ $('Set Prompt and Output').item.json.prompt }}nnUse the following context (delimited by ) and the chat history to answer the user query.nn{{ $json.concatenated_document_pageContent }}n"
        },
        "promptType": "define"
      },
      "typeVersion": 1.8
    },
    {
      "id": "d69f8d62-3064-40a8-b490-22772fbc38cd",
      "name": "Chat Buffer Memory",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        2900,
        200
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "a399f8e6-fafd-4f73-a2de-894f1e3c4bec",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1800,
        -220
      ],
      "parameters": {
        "color": 7,
        "width": 820,
        "height": 580,
        "content": "## Perform adaptive retrievaln**Find document considering both query and context.**"
      },
      "typeVersion": 1
    },
    {
      "id": "7f10fe70-1af8-47ad-a9b5-2850412c43f8",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2640,
        -220
      ],
      "parameters": {
        "color": 7,
        "width": 740,
        "height": 580,
        "content": "## Reply to the user integrating retrieval context"
      },
      "typeVersion": 1
    },
    {
      "id": "5cd0dd02-65f4-4351-aeae-c70ecf5f1d66",
      "name": "Respond to Webhook",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        3120,
        -20
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "4c56ef8f-8fce-4525-bb87-15df37e91cc4",
      "name": "Sticky Note6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        280,
        -220
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 580,
        "content": "## User query classificationn**Classify the query into one of four categories: Factual, Analytical, Opinion, or Contextual.**"
      },
      "typeVersion": 1
    },
    {
      "id": "3ef73405-89de-4bed-9673-90e2c1f2e74b",
      "name": "When Executed by Another Workflow",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        -280,
        -140
      ],
      "parameters": {
        "workflowInputs": {
          "values": [
            {
              "name": "user_query"
            },
            {
              "name": "chat_memory_key"
            },
            {
              "name": "vector_store_id"
            }
          ]
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "0785714f-c45c-4eda-9937-c97e44c9a449",
      "name": "Combined Fields",
      "type": "n8n-nodes-base.set",
      "position": [
        40,
        -20
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "90ab73a2-fe01-451a-b9df-bffe950b1599",
              "name": "user_query",
              "type": "string",
              "value": "={{ $json.user_query || $json.chatInput }}"
            },
            {
              "id": "36686ff5-09fc-40a4-8335-a5dd1576e941",
              "name": "chat_memory_key",
              "type": "string",
              "value": "={{ $json.chat_memory_key || $('Chat').item.json.sessionId }}"
            },
            {
              "id": "4230c8f3-644c-4985-b710-a4099ccee77c",
              "name": "vector_store_id",
              "type": "string",
              "value": "={{ $json.vector_store_id || "" }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "57a93b72-4233-4ba2-b8c7-99d88f0ed572",
      "name": "Sticky Note7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -300,
        400
      ],
      "parameters": {
        "width": 1280,
        "height": 1300,
        "content": "# Adaptive RAG WorkflownnThis n8n workflow implements a version of the Adaptive Retrieval-Augmented Generation (RAG) approach. It classifies user queries and applies different retrieval and generation strategies based on the query type (Factual, Analytical, Opinion, or Contextual) to provide more relevant and tailored answers from a knowledge base stored in a Qdrant vector store.nn## How it Worksnn1.  **Input Trigger:**n    * The workflow can be initiated via the built-in Chat interface or triggered by another n8n workflow.n    * It expects inputs: `user_query`, `chat_memory_key` (for conversation history), and `vector_store_id` (specifying the Qdrant collection).n    * A `Set` node (`Combined Fields`) standardizes these inputs.nn2.  **Query Classification:**n    * A Google Gemini agent (`Query Classification`) analyzes the `user_query`.n    * It classifies the query into one of four categories:n        * **Factual:** Seeking specific, verifiable information.n        * **Analytical:** Requiring comprehensive analysis or explanation.n        * **Opinion:** Asking about subjective matters or seeking diverse viewpoints.n        * **Contextual:** Depending on user-specific or implied context.nn3.  **Adaptive Strategy Routing:**n    * A `Switch` node routes the workflow based on the classification result from the previous step.nn4.  **Strategy Implementation (Query Adaptation):**n    * Depending on the route, a specific Google Gemini agent adapts the query or approach:n        * **Factual Strategy:** Rewrites the query for better precision, focusing on key entities (`Factual Strategy - Focus on Precision`).n        * **Analytical Strategy:** Breaks down the main query into multiple sub-questions to ensure comprehensive coverage (`Analytical Strategy - Comprehensive Coverage`).n        * **Opinion Strategy:** Identifies different potential perspectives or angles related to the query (`Opinion Strategy - Diverse Perspectives`).n        * **Contextual Strategy:** Infers implied context needed to answer the query effectively (`Contextual Strategy - User Context Integration`).n    * Each strategy path uses its own chat memory buffer for the adaptation step.nn5.  **Retrieval Prompt & Output Setup:**n    * Based on the *original* query classification, a `Set` node (`Factual/Analytical/Opinion/Contextual Prompt and Output`, combined via connections to `Set Prompt and Output`) prepares:n        * The output from the strategy step (e.g., rewritten query, sub-questions, perspectives).n        * A tailored system prompt for the final answer generation agent, instructing it how to behave based on the query type (e.g., focus on precision for Factual, present diverse views for Opinion).nn6.  **Document Retrieval (RAG):**n    * The `Retrieve Documents from Vector Store` node uses the adapted query/output from the strategy step to search the specified Qdrant collection (`vector_store_id`).n    * It retrieves the top relevant document chunks using Google Gemini embeddings.nn7.  **Context Preparation:**n    * The content from the retrieved document chunks is concatenated (`Concatenate Context`) to form a single context block for the final answer generation.nn8.  **Answer Generation:**n    * The final `Answer` agent (powered by Google Gemini) generates the response.n    * It uses:n        * The tailored system prompt set in step 5.n        * The concatenated context from retrieved documents (step 7).n        * The original `user_query`.n        * The shared chat history (`Chat Buffer Memory` using `chat_memory_key`).nn9.  **Response:**n    * The generated answer is sent back to the user via the `Respond to Webhook` node."
      },
      "typeVersion": 1
    },
    {
      "id": "bec8070f-2ce9-4930-b71e-685a2b21d3f2",
      "name": "Sticky Note8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -60,
        -220
      ],
      "parameters": {
        "color": 7,
        "width": 320,
        "height": 580,
        "content": "## u26a0ufe0f  If using in Chat modennUpdate the `vector_store_id` variable to the corresponding Qdrant ID needed to perform the documents retrieval."
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "7d56eea8-a262-4add-a4e8-45c2b0c7d1a9",
  "connections": {
    "Chat": {
      "main": [
        [
          {
            "node": "Combined Fields",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Answer": {
      "main": [
        [
          {
            "node": "Respond to Webhook",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Switch": {
      "main": [
        [
          {
            "node": "Factual Strategy - Focus on Precision",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "Analytical Strategy - Comprehensive Coverage",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "Opinion Strategy - Diverse Perspectives",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "Contextual Strategy - User Context Integration",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings": {
      "ai_embedding": [
        [
          {
            "node": "Retrieve Documents from Vector Store",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Gemini Answer": {
      "ai_languageModel": [
        [
          {
            "node": "Answer",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Gemini Factual": {
      "ai_languageModel": [
        [
          {
            "node": "Factual Strategy - Focus on Precision",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Gemini Opinion": {
      "ai_languageModel": [
        [
          {
            "node": "Opinion Strategy - Diverse Perspectives",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Combined Fields": {
      "main": [
        [
          {
            "node": "Query Classification",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Gemini Analytical": {
      "ai_languageModel": [
        [
          {
            "node": "Analytical Strategy - Comprehensive Coverage",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Gemini Contextual": {
      "ai_languageModel": [
        [
          {
            "node": "Contextual Strategy - User Context Integration",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Chat Buffer Memory": {
      "ai_memory": [
        [
          {
            "node": "Answer",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Concatenate Context": {
      "main": [
        [
          {
            "node": "Answer",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Query Classification": {
      "main": [
        [
          {
            "node": "Switch",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Gemini Classification": {
      "ai_languageModel": [
        [
          {
            "node": "Query Classification",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Set Prompt and Output": {
      "main": [
        [
          {
            "node": "Retrieve Documents from Vector Store",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Factual Prompt and Output": {
      "main": [
        [
          {
            "node": "Set Prompt and Output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Opinion Prompt and Output": {
      "main": [
        [
          {
            "node": "Set Prompt and Output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Chat Buffer Memory Factual": {
      "ai_memory": [
        [
          {
            "node": "Factual Strategy - Focus on Precision",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Chat Buffer Memory Opinion": {
      "ai_memory": [
        [
          {
            "node": "Opinion Strategy - Diverse Perspectives",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Analytical Prompt and Output": {
      "main": [
        [
          {
            "node": "Set Prompt and Output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Contextual Prompt and Output": {
      "main": [
        [
          {
            "node": "Set Prompt and Output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Chat Buffer Memory Analytical": {
      "ai_memory": [
        [
          {
            "node": "Analytical Strategy - Comprehensive Coverage",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Chat Buffer Memory Contextual": {
      "ai_memory": [
        [
          {
            "node": "Contextual Strategy - User Context Integration",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "When Executed by Another Workflow": {
      "main": [
        [
          {
            "node": "Combined Fields",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Retrieve Documents from Vector Store": {
      "main": [
        [
          {
            "node": "Concatenate Context",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Factual Strategy - Focus on Precision": {
      "main": [
        [
          {
            "node": "Factual Prompt and Output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Opinion Strategy - Diverse Perspectives": {
      "main": [
        [
          {
            "node": "Opinion Prompt and Output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Analytical Strategy - Comprehensive Coverage": {
      "main": [
        [
          {
            "node": "Analytical Prompt and Output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Contextual Strategy - User Context Integration": {
      "main": [
        [
          {
            "node": "Contextual Prompt and Output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}